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We demonstrate analytically and verify numerically that recently discovered, and experimentally realized, partially
coherent dark and antidark beams are structurally stable on propagation in a statistically homogeneous, isotropic
random medium, such as the turbulent atmosphere. The dark/antidark beams defy diffraction in free space, and
they manifest themselves as dark/bright notches/bumps against an incoherent background. The structure of a
bump/notch remains invariant on propagation of the beam through the random medium, while the peak ampli-
tude of the bump/notch decays with the propagation distance in the medium at a rate dependent on the strength
of the medium turbulence. We also evaluate numerically the scintillation index of such beams and show that it is
significantly lower than that of generic, low-coherence Gaussian Schell-model beams. The combination of struc-
tural stability and low scintillations makes partially coherent dark/antidark beams very promising candidates for
information transfer and optical communications through atmospheric turbulence. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.473313

1. INTRODUCTION

Overcoming the deleterious effects of atmospheric turbulence
on the light propagating from a source to a receiver presents
one of the most formidable challenges of modern optical com-
munications [1]. In this context, it has been demonstrated not
too long ago [2,3] that reducing spatial coherence of the source
can mitigate turbulence-induced transverse spatial and angular
spreading of light beams generated by such sources. Most of
the work in this direction to date, however, has been focused
on employing statistically homogeneous light sources, such as a
Gaussian Schell-model (GSM) source [4,5]. More recently, the
quest for applications of partially coherent light to optical com-
munications has shifted to explore non-uniformly correlated
optical sources [6–8]. In particular, it has been demonstrated
lately [9] that any member of a certain class of partially coherent
vortex fields with a structured cross-spectral density in a closed
form derived in [10] is able to maintain its vortex structure in the
atmosphere under any turbulence conditions. The separability
of the orbital angular momentum of such beams, induced by
their vortex structure, from their spatial distribution in the

transverse plane and the robustness of their phase singularities
against atmospheric turbulence makes these beams attractive
candidates for optical communications.

To our knowledge, however, all the beams, both coherent
and partially coherent that have been designed for optical
communications applications to date, suffer severe structural
degradation due to atmospheric turbulence, especially over
long propagation distances or in the strong turbulence regime.
One of the most devastating consequences of the interaction of
a beam with the turbulence is the loss of a well-defined spatial
structure of the beam whereby the average spatial intensity
distribution of the source is often dramatically distorted as
the beam generated by the source propagates through the
turbulence. Yet, distinct features of spatial intensity distribu-
tions of structured beams are often utilized for information
encoding/decoding in optical communications [11]. In this
connection, one may pose a fundamental question: Do there
exist structurally stable beams whose intensity distribution is
largely immune to fluctuations in the turbulent atmosphere?
As most realistic random media, including the practically
important case of the turbulent atmosphere, feature statistically
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homogeneous, isotropic refractive index fluctuations, we will
limit our search for structurally stable beams to this generic class
of random media.

To address the just-mentioned fundamental question in this
work, we demonstrate analytically and confirm numerically
that recently discovered ideal dark or antidark (DAD) beams
on incoherent background, which defy free-space diffraction,
can be viewed as structurally stable on propagation through
any statistically homogeneous and isotropic random medium,
such as the turbulent atmosphere. In particular, we show that
the profile of the average spatial intensity of any DAD beam
remains invariant on propagation through the turbulent atmos-
phere. The only effect of the medium turbulence is that the peak
intensity of a bright bump, or dark notch on an incoherent back-
ground, decays on propagation through the turbulence until it
ultimately fades into the background. Our results are applicable
to the turbulence of any strength with any spectrum of refrac-
tive index fluctuations. We verify numerically that structural
stability of ideal DAD beams pertains to finite-power apertured
DAD beams, which can be realized in the laboratory. We also
show numerically that the DAD beam scintillation index (SI) is
significantly lower than that of a generic GSM beam, especially
in the strong turbulence regime. The combination of structural
stability of their average intensity profile and low scintillation
footprint makes DAD beams very promising candidates for
information transfer and optical communications through the
turbulent atmosphere.

This work is organized as follows. In the following section,
we present our analytical theory of structural stability of ideal
DAD beams in any statistically homogeneous isotropic random
medium. In Section 3, we present the results of our numerical
simulations to evaluate the average intensity profile and SI of
apertured DAD beams. We demonstrate excellent agreement
between our analytical results for the average intensity profile
of ideal DAD beams and our numerical simulations of the
same quantity for apertured DAD beams, which indicates the
robustness of the DAD beam structural stability. We draw our
conclusions in Section 4.

2. STRUCTURALLY STABLE BEAMS IN
TURBULENCE: ANALYTICAL THEORY

Let us start by reviewing key properties of any partially coher-
ent beam consisting of a bright bump or a dark notch against
an incoherent background. First of all, we demonstrated in
[6] that the cross-spectral density W of any partially coher-
ent diffraction-free beam in free space, which characterizes
second-order correlations of the optical fields of the beam at a
pair of points r1 and r2 in a transverse plane of the beam, is of the
form

W(r1, r2)=8(r)+9(R), (1)

where we introduced the difference and center-of-mass coordi-
nates as

r= r1 − r2, R=
(r1 + r2)

2
. (2)

Notice that the average optical intensity of the beam reads

〈I (r)〉 ≡W(r, r)=8(0)+9(r), (3)

where 8(0) represents a constant (incoherent) background for
the bump/notch of the profile9(r) to ride on.

As a consequence of the Hermiticity of the cross-spectral den-
sity, the arbitrary functions 8 and 9 must obey the following
constraints:

9∗(R)=9(R), 8∗(−r)=8(r). (4)

In addition, the cross-spectral density must be nonnegative
definite, which is a nontrivial constraint, in general. One way
to satisfy it is to find a series expansion of W in terms of coher-
ent modes with nonnegative coefficients (modal weights).
We showed elsewhere [6] how a class of such beams, which we
termed dark/antidark diffraction-free beams, can be constructed
yielding the cross-spectral density in a closed form,

W(r,R)∝ J0(β|r|)+ α J0(β|R|), (5)

up to an irrelevant normalization constant. Here J0(x ) is a
Bessel function of the first kind and of order zero; β and α
are real parameters, with |α| ≤ 1 to ensure the nonnegative
definiteness of the cross-spectral density.

Further, we have shown in [12] that the average intensity dis-
tribution of any bump/notch against an incoherent background
in a statistically homogeneous, isotropic random medium at a
distance z away from the source can be expressed as

〈I (r, z)〉 =8(0)+
k2

z2

∫
d2r′9

(
r− r′

)
0̃m

(
k
∣∣r′∣∣
z
, z

)
.

(6)
Here the tilde denotes a Fourier transform, and 0m is a
two-point medium correlation function of the form [1]

0m(|r1 − r2|, z)

= exp

{
−4π 2k2z

∫ 1

0
dξ
∫
∞

0
dκκSn(κ)[1− J0[κ(1− ξ)|r1 − r2|)]]

}
,

(7)

where Sn(κ) is a spatial spectrum of the refractive index fluctua-
tions.

On substituting from Eq. (5) into Eq. (6), we obtain

〈I (r, z)〉 ∝ 1+
αk2

z2

∫
d2r′ J0

(
β
∣∣r− r′

∣∣) 0̃m

(
k
∣∣r′∣∣
z
, z

)
.

(8)
Further, using the summation theorem for Bessel functions
[13],

J0(β|r− r′|)=
∞∑

l=−∞

J l (βr )J l (βr ′)e il(φ−φ′), (9)

in Eq. (8) and performing a trivial angular integration, we arrive
at

〈I (r , z)〉 ∝ 1+ α Imax(z)J0(βr ). (10)

Here the peak average intensity of the bump/notch is given by

Imax(z)=
2πk2

z2

∫
∞

0
dr ′r ′ J0(βr ′)0̃m

(
kr ′

z
, z
)
, (11)
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where the Fourier transform of the medium correlation function
can be expressed as

0̃m

(
kr ′

z
, z
)
=

∫
∞

0

d x
2π

x J0

(
kr ′

z
x
)
0m(x , z). (12)

In deriving Eq. (12), we made use of the fact that the medium
fluctuations are isotropic and performed the angular integration
using the integral representation of the Bessel function [14],

J0

(
kxr ′

z

)
=

∫ 2π

0

dφ

2π
exp

(
i
kxr ′

z
cos φ

)
. (13)

Next, we introduce an auxiliary variable s = kr ′/z and
rewrite Eqs. (11) and (12) as

Imax(z)= 2π
∫
∞

0
ds s J0(s βz/k)0̃m(s , z), (14)

0̃m(s , z)=
∫
∞

0

dx
2π

x J0(s x )0m(x , z), (15)

respectively. Further on combining Eqs. (14) and (15) and inter-
changing the order of integration, we arrive at

Imax(z)=
∫
∞

0
d x x0m(x , z)

∫
∞

0
ds s J0(s x )J0(s βz/k).

(16)
Finally, using the completeness relation for the Bessel functions
[14], ∫

∞

0
dx x J0(νx )J0(µx )=

1

ν
δ(ν −µ), (17)

and performing a trivial integration with the delta function, we
arrive at our final expression for the intensity profile of an ideal
structurally stable beam in a random medium in the form

〈I (r , z)〉 ∝ 1+ α0m

(
βz
k
, z
)

J0(βr ), (18)

where the medium correlation function is re-expressed as

0m(βz/k, z)

= exp

{
−4π2k2z

∫ 1

0
dξ
∫
∞

0
dκκSn(κ)

[
1− J0

[
κ(1− ξ)βz

k

]]}
.

(19)

We can now draw a few noteworthy conclusions:

1. The discovered structurally stable beams maintain their
spatial profiles at the expense of having the peak intensities
of their bumps/notches diminished on propagation in
random media.

2. The peak intensity decay rate, given by Eq. (19), is
determined solely by the medium correlation function.

3. Our results depend neither on a type of random medium,
nor on the strength of the turbulence in the medium, as
long as the turbulence is statistically homogeneous and
isotropic.

4. By implication from the previous remark, our results
are directly applicable to light propagation through the
turbulent atmosphere.

5. Our derivation does not employ the usual quadratic
approximation for the medium correlation function in
the turbulent atmosphere, which is known to have several
caveats [15].

We note that the individual coherent modes, {Jm(βr )e imφ
},

composing each DAD beam at the source, are not invariant in
the turbulent medium, although they are diffraction-free in
free space. Yet, a judicious superposition of such uncorrelated
modes yields a shape-invariant partially coherent beam over a
distance determined by the strength of the medium turbulence.
Finally, we notice that the presented DAD beams are idealized
as they carry infinite power. It is then of great interest to find
out whether finite-power realizations of such beams, realized
by aperturing each coherent mode, for example, maintain their
structural stability in the turbulence. In the next section, we
address this crucial issue via numerical simulations.

3. NUMERICAL SIMULATION OF DAD BEAM
PROPAGATION THROUGH TURBULENCE

In this section, we first briefly introduce a multiple phase screen
(MPS) method for numerical simulation of the DAD beam
propagation in a random medium. We will focus on the case
of the turbulent atmosphere as the latter has direct practical
significance for optical communications. We then compare our
numerical results with the corresponding theoretical results of
the previous section to affirm the validity of our analytical con-
clusions beyond the ideal DAD beam approximation. Lastly,
we employ the MPS method to study the SI behavior of DAD
beams in the turbulent atmosphere.

A. Introduction to the Multiple Phase Screen Method

The evolution of a beam in the turbulent atmosphere is deter-
mined by the interplay of free-space diffraction and atmospheric
turbulence. Within the framework of the MPS method, the
propagation distance z is divided into N segments of equal
length 1z= z/N. We assume that, inside each segment
of length1z [see Fig. 1(a)], the atmospheric turbulence effects
play out within a very thin layer [see Fig. 1(b)], which we replace
by a phase screen with desired turbulence statistics. Hence, the
cumulative evolution of the beam in the turbulent atmosphere

Fig. 1. Schematics for the multiple phase screen technique to
numerically study beam propagation in the turbulent atmosphere.
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consists of a sequence of alternating free-space propagation seg-
ments of length1z and phase screens. In greater detail, the MPS
method works as follows. First, we assume that all phase screens
are “frozen.” Each mode of a given ensemble realization of a
DAD beam propagates sequentially through all phase screens
as indicated in Fig. 1(c). We then superpose all the propagated
modes, composing the DAD ensemble realization in question,
at a receiving plane. Thus, we can quantitatively describe the
evolution of the given DAD ensemble realization through the
turbulent atmosphere. Next, we “refresh” all phase screens to
ensure another DAD ensemble realization “sees” a different
statistical realization of the atmosphere, and we redo all the
above operations for the next realization. As a result, we amass
a database of statistical realizations of DAD beams, which have
propagated over a given stretch of the turbulent atmosphere,
that enables us to infer the average intensity distribution as
well as statistics (SI) of DAD beams in the turbulent atmos-
phere [16–19]. In essence, the implementation of the MPS is
conceptually similar to that of a split-step Fourier approach of
nonlinear fiber optics [20].

We can now write

Uz = TN × HN{. . . Tk × Hk{. . . T1 × H1{U0}}}, k ∈ [2, N − 1] ,
(20)

where U0 and Uz are the electric fields of the beam in the source
and receiver planes, respectively. Hk{ } is a free-space transfer
function in the kth segment, and Tk = exp(iψk) is a trans-
mission function of the corresponding random phase screen.
Further,ψk is an accumulated phase induced by the turbulence
over the distance1z. It is given by

ψk = Re {FT{Ck ×8θ }}, (21)

where Re and FT stand for the real part of a complex number
and a Fourier transform, respectively. Next, Ck is a circular
complex Gaussian random function. We refresh Ck to refresh
the phase screens. 8θ = 2π1zk28n characterizes the power
spectrum of the phase screen with8n being the power spectrum
of refractive index fluctuations. To describe the latter quanti-
tatively, we adopt the modified von Karman spectrum, given
by [1]

8n (κ)= 0.033C 2
n

exp
(
−κ2/κ2

m

)(
κ2 + κ2

0

)11/6 , 0≤ κ <∞, (22)

with κm = 5.92/l0 and κo = 2π/L0. Here C 2
n is a so-called

structure constant characterizing the strength of refractive
index fluctuations; l0 and L0 denote the inner and outer scales
of the turbulence, respectively. In the following numerical
simulations, we assume l0 = 1 mm and L0 = 1 m.

B. Numerical Simulation Results and Comparison
with Analytical Theory

The cross-spectral density of a DAD beam field at the source has
a coherent mode representation as [6,8]

W(r1, r2)=

m=M∑
m=−M

λmψ
∗

m(r1, z)ψm(r2, z). (23)

Here the coherent modes {ψm} read

ψm (r)= Jm (βr ) exp (imφ) , (24)

and the modal weights are specified by λm = 1+ (−1)mα,
|α| ≤ 1. In theory, the number of coherent modes required to
reproduce an ideal DAD beam is infinite. However, a reliable
representation of finite-power DAD beams can be realized in the
laboratory with a finite (large) number of modes [8]. In practice,
each coherent mode needs to be truncated to ensure it carries a
finite amount of power. To this end, we use a circular function of
radius r0 to truncate each mode according to the following rule:

ψ A
m (r)=ψm(r)c ir c (r/r0), (25)

where

c ir c (r/r0)=

{
1, |r| ≤ r0;

0, otherwise.
(26)

Having truncated all modes, we can study the evolution of
DAD beams in the turbulent atmosphere with the aid of the
MPS method. In the following, we will present our simula-
tion results. The parameters of the source and the medium
are as follows: M = 21, r0 = 1 m, β = 3.625× 10−5k, and
k = 2π/λ corresponding to the wavelength λ= 632.8 nm. The
distances 1z between adjacent phase screens are adopted
to be 30 m, 60 m, 200 m, 500 m, and 667 m for C 2

n =

10−13m−2/3, 10−14 m−2/3, 10−15 m−2/3, 10−16 m−2/3, and
10−17 m−2/3, respectively. They meet the Rytov coefficient
requirements [16,17].

First, we explore the intensity evolution of DAD beams
during propagation. It follows from Eq. (18) that the intensity
profile of an ideal DAD beam remains invariant and the tur-
bulence only affects its peak intensity. To compare numerical
results for truncated beams with theoretical predictions for
ideal DAD beams concisely yet comprehensively, we exhibit in
Fig. 2 the on-axis intensity of DAD beams as a function of the
propagation distance for different C 2

n . The theoretical results,
obtained from Eq. (18), are displayed with solid curves. We can
infer from the figure that, for any DAD beam, ideal or apertured,
the on-axis intensity I (0, z) gradually increases/decreases to
unity, which is the incoherent background intensity (in arbitrary
units). It follows that any bump/notch gradually disappears
due to the atmospheric turbulence until it completely fades
into the background over a certain critical distance. Clearly,
the usefulness of DAD beams for optical communications is
limited by the critical distance, which, in turn, depends on the
turbulence strength. As is anticipated, the lower C 2

n , the lower
the rate at which a structural feature (bump or notch) vanishes.
We display our simulation results with the solid curves with
triangles as seen in Fig. 2. The up-pointing and down-pointing
triangles correspond to antidark and dark beams, respectively.
We can conclude by comparing our numerical results with our
analytics that the two are in excellent agreement for any strength
of the turbulence. We can then conclude that structural stability
in the turbulence is not limited to ideal DAD beams but is well
translated to finite-power DAD beams.

Next, we examine the SI of DAD beams propagating in
the turbulent atmosphere. The SI, employed to quantify the
strength of intensity fluctuations of light, is defined as [18]

σ 2 (r)=
〈
I 2 (r)

〉
/〈I (r)〉2 − 1, (27)
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Fig. 2. On-axis intensity I (0, z) of DAD beams propagating in
the turbulent atmosphere. Our color scheme is explained in the inset.
Our theoretical results are exhibited with solid curves. Our numerical
results for antidark beams (α = 1) and dark beams (α =−1) are dis-
played with solid curves with up-pointing triangles and down-pointing
triangles, respectively. The number of phase screens is N = 30.

where the angle brackets denote ensemble averaging.
In Fig. 3, we show the average intensity and SI evo-

lution of the DAD beam propagating in the weakly
turbulent atmosphere. The structure constant is chosen as
C 2

n = 1× 10−16 m−2/3. To highlight the effect of immunity to
the turbulence, we compared the SI of a DAD beam with that

of a conventional GSM beam. The cross-spectral density of the
latter reads [5]

W(r1, r2)∝ exp

(
−

r2
1 + r2

2

4δ2
I

)
exp

[
−
(r1 − r2)

2

2δ2
c

]
, (28)

where δI and δc denote the rms beam width and transverse
coherence width at the source, respectively. To simulate GSM
beam propagation through the turbulent atmosphere with
the MPS method, we first employ a complex screen method
to generate a statistical ensemble of a GSM source [21]. We
then follow the same MPS steps as those we took to study DAD
beam propagation through the atmosphere to evaluate statistical
properties of GSM beams. To furnish a fair comparison, we
stipulate that the GSM beam width be the same as that of the
DAD beam’s central bump/notch. To this end, we employ the
following definition of the beam width s [22]

s 2
=

∫
drr 2
〈I (r)〉∫

dr〈I (r)〉
. (29)

A straightforward calculation yields the rms width of 75 mm
for a DAD beam bump/notch. Hence, in the following numeri-
cal simulations, we adopt δI = 75 mm and δc = 25 mm for
a GSM beam. It is by now firmly established that partially
coherent beams with lower coherence are better able to resist
turbulence-induced degradation than their more coherent
cousins [16]. In this connection, a GSM beam with δ2

c /δ
2
I � 1

can be treated as nearly incoherent. In Fig. 3(a), we display the
density plots of the average intensity and SI distributions for

Fig. 3. (a) Density plots of the SI and intensity of the DAD and GSM beams propagating in the turbulent atmosphere. (b) SI-intensity colormap.
Its hue and brightness describe the scintillation index and intensity, respectively. (c) Plots of the ASIs of the DAD and GSM beams versus the propaga-
tion distance. The parameters are chosen as C 2

n = 1× 10−16 m−2/3 and N = 20.
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DAD and GSM beams with the just-described parameters
propagating in the turbulent atmosphere. We adopt an SI-
Intensity colormap, shown in Fig. 3(b). The hue and brightness
of the map quantify the SI and average intensity, respectively.
We find that, in the weak turbulence, C 2

n = 1× 10−16 m−2/3,
the average intensity profiles of the antidark beam (top row)
and dark beam (middle row) remain almost invariant with the
propagation distance over distances up to z= 10 km. However,
the density plot colors change from red at z= 0 km to green
at z= 10 km, implying that the SI notably increases with the
propagation distance for both beams. We observe though that,
at the same propagation distance, the colors of the density plots
of dark and antidark beams are the same. We can then infer
that both types of beams display qualitatively the same behav-
ior in the turbulent atmosphere. At the same time, we notice
that the density plot color of a GSM beam, whose behavior is
exhibited in the bottom row, changes from red at z= 0 km to
purple at z= 10 km. We then conclude that even low source
coherence GSM beams are much more prone to succumbing
to the turbulence than are DAD beams. To reaffirm this point,
we plot an average SI (ASI) over a transverse cross section of
each beam versus the propagation distance. ASI is defined as
ASI= 1

D

∫
D σ

2(r)dr. D is given by a circular area of radius
75 mm in our numerical simulations. The relevant result is
exhibited in Fig. 3(c). The ASI curves of all beams monoton-
ically increase with the propagation distance. As anticipated
above, the red and blue curves, corresponding to the antidark
and dark beams, respectively, completely overlap. Further, the
ASI curve of a GSM beam grows faster than the ones for DAD

beams. As an example, at z= 10 km, the ASIs for the GSM and
DAD beams are 0.056 and 0.018, respectively.

Next, we explore the average intensity evolution and scin-
tillations of DAD beams in the atmosphere with stronger
turbulence. The structure constant is then chosen as
C 2

n = 1× 10−13 m−2/3. All evolution scenarios are qualita-
tively similar to those considered above in the weak turbulence
regime. However, as we observe in Fig. 4, ASIs are 0.38 and 0.12
for a GSM beam and DAD beam, respectively, at a fairly short
propagation distance, z= 450 m. That is, GSM beam scintilla-
tions are more than 3 times those of a DAD beam. Undoubtedly,
the difference in scintillation behavior of GSM and DAD beams
will only grow with the propagation distance. Therefore, we
have shown that DAD beams have superior characteristics
in the turbulent atmosphere compared to any garden variety,
i.e., GSM partially coherent beam. The superiority of DAD
beams is especially noticeable when the turbulence is stronger.

4. CONCLUSION

We have explored the structural stability of optical beams
on propagation through the turbulent atmosphere. We have
demonstrated analytically that a recently discovered class of
DAD partially coherent beams, which are diffraction-free in
free space, remain structurally stable on propagation through a
statistically homogeneous isotropic random medium, such as
the turbulent atmosphere. In particular, each DAD diffraction-
free beam is characterized by a bright bump or a dark notch
against an incoherent background. We have shown that DAD
beams maintain their structure of a bright bump/dark notch

Fig. 4. Same quantities as those in Fig. 3. The parameters are chosen as C 2
n = 1× 10−13 m−2/3 and N = 15.
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against an incoherent background in the turbulent atmosphere.
Moreover, the spatial profile of the bump/notch is maintained as
well. The turbulence, however, causes the peak intensity of the
bump/notch to decay on propagation at the rate dependent on
the turbulence strength. Our analytical results pertain to ideal,
infinite-power DAD beams. We have compared our analytics
with numerical simulations for the propagation of finite-power
realizations of DAD beams and found excellent agreement
between the two. We have also numerically investigated the SI
of DAD beams and compared its behavior with that of low-
coherence GSM beams. We found that DAD beams have much
lower scintillations than low-coherence GSM beams under
any turbulence conditions. The superiority of DAD beams is
especially pronounced in the strong turbulence situation. The
combination of structural stability and low SI makes DAD
beams promising candidates for optical communications,
optical trapping, and laser radar applications, among others.
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